Precipitation of Carbonate Minerals Induced by the Halophilic Chromohalobacter Israelensis under High Salt Concentrations: Implications for Natural Environments
نویسندگان
چکیده
The precipitation of carbonate minerals induced by halophilic bacteria has aroused wide concern. The study aimed to investigate the characterization and process of biomineralization in high salt systems by halophilic Chromohalobacter israelensis LD532 (GenBank: KX766026) bacteria, isolated from the Yinjiashan Saltern in China. Carbonate minerals were induced in magnesium sulfate and magnesium chloride medium, respectively. The mineral phase, morphology, and elemental composition of minerals were analyzed using X-ray p owder diffraction, scanning electron microscopy, and energy dispersive X-ray detection. Cells and ultrathin slices were studied using high resolution transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray detection. The carbonic anhydrase and ammonia released from LD532 bacteria increased pH of the medium and promoted the carbonate precipitation. Magnesium calcite and aragonite were induced by LD532 bacteria in magnesium chloride medium at an Mg/Ca molar ratio of 2, while Magnesium calcite and monohydrocalcite were precipitated in magnesium sulfate medium at the same Mg/Ca ratio, only monohydrocalcite were formed in both control groups. The morphologies and compositions of minerals in MgSO4 and MgCl2 solutions displayed significant differences, indicating different Mg2+ could affect physiological and biochemical activities of LD532 bacteria and thus affect the mineral deposition. Further study showed the nucleation sites were located on extracellular polymeric substances and intracellular vesicles of LD532 bacteria. This study is beneficial to the mechanism of carbonate biomineralization in natural salt environments.
منابع مشابه
Biomineralization of Carbonate Minerals Induced by the Halophilic Chromohalobacter israelensis under High Salt Concentrations: Implications for Natural Environments
The mechanism underlying microbiologically induced carbonate precipitation have not been thoroughly characterized, although numerous scholars and experts have specifically investigated questions regarding minerals induced by bacteria. The study of the precipitation of carbonate minerals induced by halophilic bacteria has aroused wide concern. The present study aimed to investigate the character...
متن کاملBiomineralization of Carbonate Minerals Induced by Halophilic Chromohalobacter israelensis in High Salt Concentration: Implications for Natural Environments
High salt environment was widespread in modern and geological record, and sedimentation induced by microbes in these systems was an important part of sedimentary minerals and rocks. The mechanism of microbiologically induced carbonate precipitation has not been solved thoroughly although numerous scholars and experts have made specifically research of the problems with respect to minerals induc...
متن کاملLife at high salt concentrations, intracellular KCl concentrations, and acidic proteomes
Extremely halophilic microorganisms that accumulate KCl for osmotic balance (the Halobacteriaceae, Salinibacter) have a large excess of acidic amino acids in their proteins. This minireview explores the occurrence of acidic proteomes in halophiles of different physiology and phylogenetic affiliation. For fermentative bacteria of the order Halanaerobiales, known to accumulate KCl, an acidic prot...
متن کاملThe isolation of halophilic urease-producing bacteria and the study of their nano-crystal production
Urease-producing bacteria can precipitate calcite nano-crystals by producing urease in the presence of urea and calcium. Calcite precipitation resulting from microbial activity is a process which causes cementation of soil particles in nature. The purpose of this study was to isolate urease-producing halophilic bacteria in order to precipitate calcite in saline soil. Natural samples, including ...
متن کاملBiomineralization processes of calcite induced by bacteria isolated from marine sediments
Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cu...
متن کامل